Este é um assunto bastante amplo e provavelmente interessantíssimo pra quem quer começar a gostar de astronomia em geral... Vai ficar um pouco grande mas vale a pena dar uma olhada. Falarei sobre, digamos, retoricas e teorias sobre coisas do universo BEM teóricas...
Eu vou postar e mesmo assim tenho que pesquisar e ler mais sobre o assunto... E vou dividir senão vai ficar meio grande demais...
Vamos pra mais uma viajem!
Matéria escura
É uma parte do Universo que os astrônomos sabem que existe, mas ainda não sabem exatamente o que seja. É matéria, porque se consegue medir sua existência por meio da força gravitacional que ela exerce. E é escura, porque não emite nenhuma luz. ssa segunda propriedade é justamente o que dificulta seu estudo.
Todas as observações de corpos no espaço são feitas a partir da luz ou de outro tipo de radiação eletromagnética emitida ou refletida pelos astros. Como a matéria escura não faz nenhuma dessas coisas, é "invisível".
Ainda assim, sabe-se que ela está lá. Na década de 1930, o astrônomo Fritz Zwicky, um húngaro radicado nos Estados Unidos, calculou a massa de algumas galáxias e percebeu que ela era 400 vezes maior do que sugeriam as estrelas observadas! A diferença está justamente na massa de matéria escura. E quanta diferença! Pelas contas do professor Fritz, você deve ter percebido que ela não é apenas um detalhe na composição do Universo, e, sim, seu principal ingrediente. Hoje em dia, calcula-se que el corresponda a mais ou menos 95% do Universo.
É como se todas as galáxias que conhecemos atualmente fossem apenas alguns pedacinhos de chocolate encravados no grande bolo do Universo. Existem várias teorias sobre o que seria a tal massa escura.
O mais provável é que ela seja feita de partículas subatômicas, menores que nêutrons, prótons e elétrons e ainda indetectáveis pelos atuais instrumentos de medição dos cientistas. Para terminar, vale um esclarecimento: apesar da semelhança no nome, matéria escura não tem nada a ver com buraco negro.
Primeira evidência: Aglomerados de galáxias
Uma das primeiras evidências da existência de matéria escura surgiram através do estudo do movimento orbital das galáxias em aglomerados (que contêm tipicamente de centenas a milhares de galáxias), como o algomerado de Coma e de Virgem. O que estes estudos encontraram foi que as velocidades das galáxias eram da ordem de dez a cem vezes maiores do que se esperava.
A massa do aglomerado pode ser obtida através do teorema do Virial, na hipótese de que as galáxias dentro do aglomerado tenham atingido uma situação de "equilíbrio" orbital (ou seja, suas órbitas estejam "virializadas"). O teorema do Virial pode ser expresso como a seguinte relação entre a energia cinética T e potencial U.
A relação acima pode ser usada para estimar a massa M do aglomerado, sendo R um raio médio dentro do qual se mede as velocidades das galáxias e V é a velocidade média das galáxias. Esta fórmula pode também ser usada para calcular a massa de galáxias elípticas, onde o movimento das estrelas em torno do centro da galáxia é análogo a de galáxias dentro de aglomerados, só que neste caso V seria a dispersão de velocidades (uma medida da velocidade média das estrelas) e R um raio característico da galáxia.
Segunda evidência: curvas de rotação de galáxias
O que são curvas de rotação de galáxias? São curvas que medem a velocidade das estrelas ou gás orbitando no disco em torno do centro das galáxias espirais em função da distância ao centro. Assim como as órbitas dos planetas, as órbitas das estrelas e das nuvens de gás seguem as leis de Kepler, segundo as quais a velocidade orbital em torno do potencial central cresce com a massa central e decresce com a distância ao centro. Podemos quantificar isto através da igualdade matemática.
Terceira evidência: Lentes gravitacionais
As lentes gravitacionais se constituem numa ferramenta poderosa para "pesar" a matéria escura. Elas exigem imagens de alta qualidade para serem observadas, e por isto só recentemente têm sido utilizadas, graças ao avanço da instrumentação astronômica, que tem levado a um crescente aprimoramento da qualidade da imagem, bem como a utilização do Telescópio Espacial, que se encontra essencialmente fora da atmosfera da Terra.
Quando a luz de uma fonte distante passa próximo a uma concentração de matéria, sua trajetória se curva fazendo a fonte parecer estar numa outra direção, produzindo também uma distorção na forma da galáxia distante. Este efeito pode ser usado para detectar e "pesar" a matéria escura.
Nesta mesma página, as simulações mostram como as imagens das galáxias distantes ficam distorcidas quando sua luz passa, no caminho até nós, por aglomerados de galáxias massivos, que distorcem o caminho da luz. Um exemplo concreto é a imagem abaixo obtida com o Telescópio Hubble que mostra múltiplas imagens de uma galáxia azul distante produzida pela grande concetração de massa de um aglomerado de galáxias mais próximo:
Efeito Drooper
Assim como o som alto de uma sirene de caminhão de bombeiros, que vai diminuindo à medida que o caminhão se distancia, o movimento das estrelas afeta os comprimentos de onda da luz que recebemos delas. Esse fenômeno é chamado de efeito Doppler.
Podemos calcular o efeito Doppler medindo as linhas no espectro de uma estrela (veja Como funciona a luz e Como funcionam as estrelas) e as comparando ao espectro de uma lâmpada padrão. A quantidade do deslocamento Doppler nos diz a velocidade com que a estrela está se movendo em relação a nós. Além disso, a direção do deslocamento Doppler pode informar a direção do movimento da estrela. Se o espectro de uma estrela mudou para a extremidade azul, a estrela está se aproximando de nós; se mudou para a extremidade vermelha, então a estrela está se distanciando.
Um vídeo pra acalentar mais duvidas.
Energia Escura
A chamada "energia escura" ("dark energy") surgiu com novas teorias, que tentam explicar recentes observações astronômicas, as quais evidenciam fatos não explicados pelas teorias atualmente aceitas pelos físicos.
Uma destas evidências é o fato da densidade total de matéria encontrada no universo na forma de matéria bariônica (toda matéria constituída de prótons e nêutrons) ser muito menor, da ordem de 5%, que a massa predita para um universo plano. Várias medidas, realizadas desde a década de 30, indicam que deva existir um outro tipo de matéria no universo, para explicar, por exemplo, como estrelas têm orbitas rápidas em torno de galáxias e a forma como galáxias orbitam aglomerados de galáxias.
Este outro tipo de matéria, chamada de matéria escura, poderia ser constituída de exóticas partículas elementares propostas por teorias da física de partículas; e deveriam constituir os 95% de matéria restantes para atingir a densidade crítica.
Entretanto, uma série de medidas realizadas têm chegado a uma mesma conclusão: se a matéria escura existe, ela deve somar menos que a metade da densidade crítica. Uma destas medidas leva em consideração o fato de os aglomerados de galáxias serem os maiores objetos no universo, devendo assim constituir uma boa amostra para se obter proporções relativas de matéria escura e bariônica.
Essa relação pode ser inferida da massa do aglomerado (que soma matéria escura e bariônica) e da sua luminosidade (que dá uma idéia da quantidade de matéria bariônica). A razão esperada seria de vinte para um, mas a razão observada é da ordem de dez para um. Desta forma, a quantidade de matéria de todos os tipos, no universo, contabiliza menos que a metade da massa crítica.
O diagrama acima mostra como deveria ser o fundo de microondas do universo nos três casos possíveis, o primeiro, correspondente a um universo plano, foi confirmado pelas observações, de forma que o universo tem a densidade crítica. Caso a massa do universo fosse muito maior, ou muito menor, o tamanho das regiões de diferentes temperaturas, que aparecem em azul e amarelo pareceria maior ou menor, respectivamente.
A necessidade de consideração da densidade do universo como sendo a densidade crítica surgiu no início dos anos 90, com precisas medidas do fundo de microondas do universo, as quais suportaram as predições da teoria inflacionária, evidenciando que o universo é realmente plano.
Desta forma, como nem toda a matéria existente no universo é suficiente para alcançar a densidade crítica, se torna necessária uma outra forma de "completar" a parte faltante. Como pela teoria de Einstein, energia e massa estão intimamente ligados, pela relação E=mc2, os físicos foram levados a idéia de que esta massa faltante poderia estar sob a forma de energia, energia esta que por ser desconhecida foi chamada de energia escura e constituiria a parte faltante para se chegar a densidade crítica do universo.
Outra evidência que levou os físicos a desconfiarem da existência de outro tipo de energia no universo surgiu em 1998, quando dois grupos independentes, o Supernova Cosmology Project e o High-z Supernova Search Team, descobriram que supernovas no limite observável do universo se afastam de nós a velocidades menores que deveriam estar.
Isto significa que elas existiram em algum tempo em que o universo se expandia a taxas menores que as atuais, exatamente o resultado oposto as predições dos cosmologistas. A única explicação para esta possibilidade é que a expansão do universo deva estar se acelerando, e o único agente capaz de causar esta aceleração seria a energia escura.
Este diagrama revela variações na taxa de expansão do universo desde o Big Bang, a aproximadamente 15 bilhões de anos. Nota-se uma variação na tendência de expansão a aproximadamente 7,5 bilhões de anos.
Existem grupos de astrônomos que acreditam que esta evidência não é verdadeira, pois num universo mais jovem, as estrelas formadas tinham uma concentração de elementos pesados, os quais são determinantes para a evolução estelar, muito menor do que a encontrada nas estrelas mais jovens.
Desta forma, a comparação das supernovas de alto redshift com as supernovas relativamente próximas não garantiria segurança na determinação de magnitudes absolutas, e, desta forma, as distâncias calculadas desta maneira estariam incorretas, invalidando as conclusões baseadas nestas observações.
Exaustivos esforços têm sido feitos para demonstrar que não existem efeitos sistemáticos como este, ou então possíveis interferências causadas por poeira, desviando os valores medidos, de forma que, por enquanto, não foi encontrado nenhum efeito que realmente garanta o erro ou acerto das medidas.
De qualquer forma, já existem vários projetos que visam uma sistemática varredura de todo o espaço em busca de um número maior de supernovas observáveis com alto redshift, o que poderia trazer mais confiança às observaçães atuais.
Mesmo com estas questões não bem resolvidas, a quintessence parece ser a melhor teoria que se tem para explicar a expansão acelerada do universo e a geometria do espaço. Esta "energia do vácuo" evoluiu de tal forma que hoje constitui uma das mais desafiadoras das idéias da cosmologia moderna. Nestas teorias, os conceitos de forças fundamentais da natureza, idéias de estrutura do universo, uma possível ligação entre os mundos quântico e cosmológico, e o próprio destino do universo, estão todos envolvidos.
Energia escura versus gravidade
A energia escura disputa um cabo-de-guerra com a gravidade.
A teoria atual propõe que, no início do Universo, a gravidade assumiu a liderança, dominando a energia escura.
Cerca de 8 bilhões de anos após o Big Bang, com o espaço se ampliando e a matéria se diluindo, as atrações gravitacionais enfraqueceram e a energia escura tirou o atraso.
Se isto estiver correto, daqui a bilhões de anos a energia escura será ainda mais dominante.
Os astrônomos preveem que o nosso Universo será um verdadeiro deserto cósmico, com as galáxias se distanciando tanto umas das outras que quaisquer seres que viverem dentro delas não serão capazes de ver outras galáxias.
O nada pesa alguma coisa
O estudo também reforça a idéia de que a Energia Escura é a constante cosmológica. "Colocando todos esses dados juntos nós temos a mais forte evidência já conseguida de que a Energia Escura é a constante cosmológica, ou, em outras palavras, que o 'nada pesa alguma coisa'," explica o cientista.
A noção de que a matéria resultado do "nada", ou de que ela é resultado de flutuações do vácuo quântico, também foi confirmada recentemente em outra pesquisa.
"Será necessário fazer ainda muitos testes, mas agora a teoria de Einstein está parecendo tão boa quanto sempre foi," diz Vikhlinin.
Fonte: Muuuitas e muuuitas!
Enfim, o assunto é um pouquinho complicado mas vale a pena dar uma olhada... Pelo menos na minha opinião!
Eu vou postar e mesmo assim tenho que pesquisar e ler mais sobre o assunto... E vou dividir senão vai ficar meio grande demais...
Vamos pra mais uma viajem!
Matéria escura
É uma parte do Universo que os astrônomos sabem que existe, mas ainda não sabem exatamente o que seja. É matéria, porque se consegue medir sua existência por meio da força gravitacional que ela exerce. E é escura, porque não emite nenhuma luz. ssa segunda propriedade é justamente o que dificulta seu estudo.
Todas as observações de corpos no espaço são feitas a partir da luz ou de outro tipo de radiação eletromagnética emitida ou refletida pelos astros. Como a matéria escura não faz nenhuma dessas coisas, é "invisível".
Ainda assim, sabe-se que ela está lá. Na década de 1930, o astrônomo Fritz Zwicky, um húngaro radicado nos Estados Unidos, calculou a massa de algumas galáxias e percebeu que ela era 400 vezes maior do que sugeriam as estrelas observadas! A diferença está justamente na massa de matéria escura. E quanta diferença! Pelas contas do professor Fritz, você deve ter percebido que ela não é apenas um detalhe na composição do Universo, e, sim, seu principal ingrediente. Hoje em dia, calcula-se que el corresponda a mais ou menos 95% do Universo.
É como se todas as galáxias que conhecemos atualmente fossem apenas alguns pedacinhos de chocolate encravados no grande bolo do Universo. Existem várias teorias sobre o que seria a tal massa escura.
O mais provável é que ela seja feita de partículas subatômicas, menores que nêutrons, prótons e elétrons e ainda indetectáveis pelos atuais instrumentos de medição dos cientistas. Para terminar, vale um esclarecimento: apesar da semelhança no nome, matéria escura não tem nada a ver com buraco negro.
Primeira evidência: Aglomerados de galáxias
Uma das primeiras evidências da existência de matéria escura surgiram através do estudo do movimento orbital das galáxias em aglomerados (que contêm tipicamente de centenas a milhares de galáxias), como o algomerado de Coma e de Virgem. O que estes estudos encontraram foi que as velocidades das galáxias eram da ordem de dez a cem vezes maiores do que se esperava.
A massa do aglomerado pode ser obtida através do teorema do Virial, na hipótese de que as galáxias dentro do aglomerado tenham atingido uma situação de "equilíbrio" orbital (ou seja, suas órbitas estejam "virializadas"). O teorema do Virial pode ser expresso como a seguinte relação entre a energia cinética T e potencial U.
A relação acima pode ser usada para estimar a massa M do aglomerado, sendo R um raio médio dentro do qual se mede as velocidades das galáxias e V é a velocidade média das galáxias. Esta fórmula pode também ser usada para calcular a massa de galáxias elípticas, onde o movimento das estrelas em torno do centro da galáxia é análogo a de galáxias dentro de aglomerados, só que neste caso V seria a dispersão de velocidades (uma medida da velocidade média das estrelas) e R um raio característico da galáxia.
Segunda evidência: curvas de rotação de galáxias
O que são curvas de rotação de galáxias? São curvas que medem a velocidade das estrelas ou gás orbitando no disco em torno do centro das galáxias espirais em função da distância ao centro. Assim como as órbitas dos planetas, as órbitas das estrelas e das nuvens de gás seguem as leis de Kepler, segundo as quais a velocidade orbital em torno do potencial central cresce com a massa central e decresce com a distância ao centro. Podemos quantificar isto através da igualdade matemática.
Terceira evidência: Lentes gravitacionais
As lentes gravitacionais se constituem numa ferramenta poderosa para "pesar" a matéria escura. Elas exigem imagens de alta qualidade para serem observadas, e por isto só recentemente têm sido utilizadas, graças ao avanço da instrumentação astronômica, que tem levado a um crescente aprimoramento da qualidade da imagem, bem como a utilização do Telescópio Espacial, que se encontra essencialmente fora da atmosfera da Terra.
Quando a luz de uma fonte distante passa próximo a uma concentração de matéria, sua trajetória se curva fazendo a fonte parecer estar numa outra direção, produzindo também uma distorção na forma da galáxia distante. Este efeito pode ser usado para detectar e "pesar" a matéria escura.
Nesta mesma página, as simulações mostram como as imagens das galáxias distantes ficam distorcidas quando sua luz passa, no caminho até nós, por aglomerados de galáxias massivos, que distorcem o caminho da luz. Um exemplo concreto é a imagem abaixo obtida com o Telescópio Hubble que mostra múltiplas imagens de uma galáxia azul distante produzida pela grande concetração de massa de um aglomerado de galáxias mais próximo:
Efeito Drooper
Assim como o som alto de uma sirene de caminhão de bombeiros, que vai diminuindo à medida que o caminhão se distancia, o movimento das estrelas afeta os comprimentos de onda da luz que recebemos delas. Esse fenômeno é chamado de efeito Doppler.
Podemos calcular o efeito Doppler medindo as linhas no espectro de uma estrela (veja Como funciona a luz e Como funcionam as estrelas) e as comparando ao espectro de uma lâmpada padrão. A quantidade do deslocamento Doppler nos diz a velocidade com que a estrela está se movendo em relação a nós. Além disso, a direção do deslocamento Doppler pode informar a direção do movimento da estrela. Se o espectro de uma estrela mudou para a extremidade azul, a estrela está se aproximando de nós; se mudou para a extremidade vermelha, então a estrela está se distanciando.
Um vídeo pra acalentar mais duvidas.
Energia Escura
A chamada "energia escura" ("dark energy") surgiu com novas teorias, que tentam explicar recentes observações astronômicas, as quais evidenciam fatos não explicados pelas teorias atualmente aceitas pelos físicos.
Uma destas evidências é o fato da densidade total de matéria encontrada no universo na forma de matéria bariônica (toda matéria constituída de prótons e nêutrons) ser muito menor, da ordem de 5%, que a massa predita para um universo plano. Várias medidas, realizadas desde a década de 30, indicam que deva existir um outro tipo de matéria no universo, para explicar, por exemplo, como estrelas têm orbitas rápidas em torno de galáxias e a forma como galáxias orbitam aglomerados de galáxias.
Este outro tipo de matéria, chamada de matéria escura, poderia ser constituída de exóticas partículas elementares propostas por teorias da física de partículas; e deveriam constituir os 95% de matéria restantes para atingir a densidade crítica.
Entretanto, uma série de medidas realizadas têm chegado a uma mesma conclusão: se a matéria escura existe, ela deve somar menos que a metade da densidade crítica. Uma destas medidas leva em consideração o fato de os aglomerados de galáxias serem os maiores objetos no universo, devendo assim constituir uma boa amostra para se obter proporções relativas de matéria escura e bariônica.
Essa relação pode ser inferida da massa do aglomerado (que soma matéria escura e bariônica) e da sua luminosidade (que dá uma idéia da quantidade de matéria bariônica). A razão esperada seria de vinte para um, mas a razão observada é da ordem de dez para um. Desta forma, a quantidade de matéria de todos os tipos, no universo, contabiliza menos que a metade da massa crítica.
O diagrama acima mostra como deveria ser o fundo de microondas do universo nos três casos possíveis, o primeiro, correspondente a um universo plano, foi confirmado pelas observações, de forma que o universo tem a densidade crítica. Caso a massa do universo fosse muito maior, ou muito menor, o tamanho das regiões de diferentes temperaturas, que aparecem em azul e amarelo pareceria maior ou menor, respectivamente.
A necessidade de consideração da densidade do universo como sendo a densidade crítica surgiu no início dos anos 90, com precisas medidas do fundo de microondas do universo, as quais suportaram as predições da teoria inflacionária, evidenciando que o universo é realmente plano.
Desta forma, como nem toda a matéria existente no universo é suficiente para alcançar a densidade crítica, se torna necessária uma outra forma de "completar" a parte faltante. Como pela teoria de Einstein, energia e massa estão intimamente ligados, pela relação E=mc2, os físicos foram levados a idéia de que esta massa faltante poderia estar sob a forma de energia, energia esta que por ser desconhecida foi chamada de energia escura e constituiria a parte faltante para se chegar a densidade crítica do universo.
Outra evidência que levou os físicos a desconfiarem da existência de outro tipo de energia no universo surgiu em 1998, quando dois grupos independentes, o Supernova Cosmology Project e o High-z Supernova Search Team, descobriram que supernovas no limite observável do universo se afastam de nós a velocidades menores que deveriam estar.
Isto significa que elas existiram em algum tempo em que o universo se expandia a taxas menores que as atuais, exatamente o resultado oposto as predições dos cosmologistas. A única explicação para esta possibilidade é que a expansão do universo deva estar se acelerando, e o único agente capaz de causar esta aceleração seria a energia escura.
Este diagrama revela variações na taxa de expansão do universo desde o Big Bang, a aproximadamente 15 bilhões de anos. Nota-se uma variação na tendência de expansão a aproximadamente 7,5 bilhões de anos.
Existem grupos de astrônomos que acreditam que esta evidência não é verdadeira, pois num universo mais jovem, as estrelas formadas tinham uma concentração de elementos pesados, os quais são determinantes para a evolução estelar, muito menor do que a encontrada nas estrelas mais jovens.
Desta forma, a comparação das supernovas de alto redshift com as supernovas relativamente próximas não garantiria segurança na determinação de magnitudes absolutas, e, desta forma, as distâncias calculadas desta maneira estariam incorretas, invalidando as conclusões baseadas nestas observações.
Exaustivos esforços têm sido feitos para demonstrar que não existem efeitos sistemáticos como este, ou então possíveis interferências causadas por poeira, desviando os valores medidos, de forma que, por enquanto, não foi encontrado nenhum efeito que realmente garanta o erro ou acerto das medidas.
De qualquer forma, já existem vários projetos que visam uma sistemática varredura de todo o espaço em busca de um número maior de supernovas observáveis com alto redshift, o que poderia trazer mais confiança às observaçães atuais.
Mesmo com estas questões não bem resolvidas, a quintessence parece ser a melhor teoria que se tem para explicar a expansão acelerada do universo e a geometria do espaço. Esta "energia do vácuo" evoluiu de tal forma que hoje constitui uma das mais desafiadoras das idéias da cosmologia moderna. Nestas teorias, os conceitos de forças fundamentais da natureza, idéias de estrutura do universo, uma possível ligação entre os mundos quântico e cosmológico, e o próprio destino do universo, estão todos envolvidos.
Energia escura versus gravidade
A energia escura disputa um cabo-de-guerra com a gravidade.
A teoria atual propõe que, no início do Universo, a gravidade assumiu a liderança, dominando a energia escura.
Cerca de 8 bilhões de anos após o Big Bang, com o espaço se ampliando e a matéria se diluindo, as atrações gravitacionais enfraqueceram e a energia escura tirou o atraso.
Se isto estiver correto, daqui a bilhões de anos a energia escura será ainda mais dominante.
Os astrônomos preveem que o nosso Universo será um verdadeiro deserto cósmico, com as galáxias se distanciando tanto umas das outras que quaisquer seres que viverem dentro delas não serão capazes de ver outras galáxias.
O nada pesa alguma coisa
O estudo também reforça a idéia de que a Energia Escura é a constante cosmológica. "Colocando todos esses dados juntos nós temos a mais forte evidência já conseguida de que a Energia Escura é a constante cosmológica, ou, em outras palavras, que o 'nada pesa alguma coisa'," explica o cientista.
A noção de que a matéria resultado do "nada", ou de que ela é resultado de flutuações do vácuo quântico, também foi confirmada recentemente em outra pesquisa.
"Será necessário fazer ainda muitos testes, mas agora a teoria de Einstein está parecendo tão boa quanto sempre foi," diz Vikhlinin.
Fonte: Muuuitas e muuuitas!
Enfim, o assunto é um pouquinho complicado mas vale a pena dar uma olhada... Pelo menos na minha opinião!